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Planning a cable railway is a complex task. One has to take into account many

aspects and an optimal solution is not well defined. The calculation of the cable

configurations for given support positions, cable pretension and cable types however

is rather formalizable and presents a direct problem. In this research work we study

the first steps to solve the inverse problem: computation of optimal support positions

for a given support cable type and cable car mass. We define an appropriate cost

functional (objective function) with several constraints and use numerical minimiza-

tion strategies to obtain optimal solutions. Computations of cable configurations are

performed, as required by the norms.
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I. INTRODUCTION

The simulation of technical systems is typically a direct problem. The evolution equations

for the system (usually differential equations) and the initial/boundary conditions are known.
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An appropriate solver gives us the (unique) state of the system at a later time. For the field

of cable ropeways the solver consists of a program, which allows the computation of the

various cable configurations, when the cable car is moving, the forces on the supports etc.

[1–3]. The equations of motion of classical mechanics and elasticity theory are the basis

for this task [4]. Model parameters such as support positions, cable types, etc. usually are

selected by the engineer and are input quantities.

A new, large research field for applied mathematics as well as engineering and physics is

opening when inverse problems are considered. Inverse problems are typical for example

in scattering theory, where from the incident and scattered waves one has to deduce the

scattering potential (e.g. in applications of nuclear physics or nondestructive testing of steel

by ultrasound [5, 6]). In the context of a cable railway inverse problems arise when one looks

for an algorithm, which determines the model parameters autonomously [7]. For example,

where are the best positions of the supports for a ropeway when a mountain profile is given?

Or which cable type is optimal and how much one should strain? There are many questions,

and the first of all is how we define a good solution and distinguish it from a bad solution.

The overview in Fig. 1 gives an impression of the several planning steps of a cable railway.

The choice of the cable path is influenced by many requirements and norms, as well as

restrictions. In this work we address the particular problem to find the optimal support

positions for a cable railway. We define an appropriate cost functional and constraints.

We use global and local optimization techniques to identify the optimal coordinates of a

given constant number of supports. For this purpose we use two different models. When

one searches a local minimum of a function, then a relatively small number of function

evaluations are sufficient to find the solution. In this case we can use a sophisticated program

to compute all quantities needed to evaluate the cost functional and the constraints. For

each iteration step in the minimization procedure we are able to evaluate a complete ride of

the cable car from valley to the mountain station (which takes less than a minute on a PC).

Global optimization requires much more computational effort. To obtain a tractable model,

we introduce suitable approximations for the determination of the cable car trajectory.

In particular, we assume that the support cable is spanned with a counter weight in the

valley station. This assumption drastically simplifies the computation of the support cable

configurations [8]. Further simplifications were done:

• The movement of the cable car is assumed quasi–static (corresponding to the norm
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FIG. 1: Planning of a cable railway: aspects of the planning steps.

[9]).

• We neglect temperature effects. We work with one reference temperature only.

• We neglect the problem of the hauling cable (in particular its distance from the

ground).

• Important questions about cable oscillations and their minimization are ignored [10].

II. APPROXIMATE CABLE CURVE AND CABLE CAR TRAJECTORY

The function to describe an inelastic cable in a gravitational field, the catenary, is well

known [11]. For cable railway applications the elasticity must be taken into account, for

small strains the ”elastic catenary” in a x − y coordinate system is given [12] by

y = ā cosh

(

x − x̄m

ā

)

− c̄ −
1

2

gρL

EA
ā2 sinh2

(

x − x̄m

ā

)

. (1)
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In this expression g is the earth acceleration, ρL the linear mass density (kg/m), E the

isothermal modulus of elasticity and A the cross section of the cable, respectively. The

three parameters ā, x̄m, c̄ determine the cable curve uniquely and are fixed by appropriate

boundary conditions. From Eq. (1) one deduces a parabola approximation for the empty

cable [8]. Apart from this approximation the determination of the point load trajectory

depends on the boundaries of the support cable. If the support cable is spanned with a

weight, the problem is statically determined. In the other case, where the cable is held fixed

at the end points, the problem is statically undetermined and a solution requires principles

from elasticity theory [13]. The numerical computation of the cable configurations and the

catenary sag of the point load, the forces on the supports etc. in this case is very time–

consuming, which makes it difficult to use global optimization. So, in order to obtain results

we also use a crude approximation for the computation of the point load trajectory and the

empty cable configuration (see Fig. 2).

Let T0 be the gravitational force of the counterweight, and let m be the mass of the point

load. We consider one span only with cartesian coordinates of the supports X1, Y1 and

X2, Y2. The mid – span catenary sag of a point–loaded cable is given [16] by

fm =
2mg + ρLgl

(T0 + ρLgym) cos(γ)

l

8
, (2)

where we use the abbreviations

l =
√

(X2 − X1)2 + (Y2 − Y1)2 , γ = arctan ∆ , ∆ ≡
Y2 − Y1

X2 − X1

. (3)

l denotes the length and γ the slope angle of the chord respectively. ym = (Y1 + Y2)/2 is

the mean y− value of the span. Given the coordinates of both supports and fm, one can

compute the trajectory of the point load using a parabola approximation (see the lower part

of Fig. 6). We obtain for X1 ≤ x ≤ X2,

f2(X1, Y1; X2, Y2; x) = ax2 + bx + c , (4)

with

a =
X1(Ym − Y2) + X2(Y1 − Ym) + Xm(Y2 − Y1)

(X1 − X2)(X1 − Xm)(X2 − Xm)
, (5)

b =
X2

m(Y1 − Y2) + X2
1 (Y2 − Ym) + X2

2 (Ym − Y1)

(X1 − X2)(X1 − Xm)(X2 − Xm)
, (6)

c =
Xm[X2(X2 − Xm)Y1 + X1(Xm − X1)Y2] + X1(X1 − X2)X2Ym

(X1 − X2)(X1 − Xm)(X2 − Xm)
. (7)
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FIG. 2: Mechanical model used in our numerical simulations.

Here we have defined:

Xm =
X1 + X2

2
, (8)

Ym = ∆ · (Xm − X2) + Y2 − fm . (9)

With these expressions the trace of the point load trajectory (x, f(x)) as well as the empty

cable curve (obtained by setting m = 0 in Eq. (2)) are computable for an arbitrary number

of supports. Using the step function Θ(x) = 1, x > 0, Θ(x) = 0, x < 0, one can write

f(x) =
∑

j

f2(Xj, Yj; Xj+1, Yj+1; x)Θ(x − Xj)Θ(−(x − Xj+1)). (10)

The sum runs over all support coordinates including the valley and mountain stations.

All considerations are based on a quasi–static movement of the point load, so the time–

dependent trajectory is (xpl(t), f(xpl(t)), where xpl(t) is the time–dependent x− coordinate

of the point load.

III. SETUP OF THE OPTIMIZATION STRATEGY

The optimization strategy requires in general the definition of a cost functional which has

to be minimized and several constraints. In our case, the definition of an appropriate cost



6

functional J is a non–trivial task. More than one desirable target makes the selection of the

best cost functional ambiguous (multiobjective optimization). It is important however to

keep in mind that a mathematical algorithm should help to reduce the number of possible

solutions (reduction of the dimension of the search space). Otherwise the algorithm is value-

less. Here we use a minimal support height for a fixed support number, in order to increase

stability against crippling. Questions about robustness of the obtained solutions are ignored

at the moment [14]. When one searches the minimum of a function, the choice of the initial

guess is an important question. When we use local optimization, we construct the starting

points using the following strategy: The terrain profile given by satellite measurements is

interpolated linearly. Start- and end position of the cableway coincide with the first and

the last pair of coordinates. Starting with a middle height of the cable supports (averaged

between a reasonable minimal and maximal value) a first algorithm looks for further neces-

sary supports between the existing supports, using chord junctions and evaluating positions

in the interpolated profile with too little distance from the chord or even situated above the

chord choosing the position with the most critical distance dcrit first. Here dcrit is defined

trough Eq. (12) with T0 → ∞ and m = 0 and is the first absolute minimum counted from

the left.

Considering a necessary minimal distance between the empty cable and the profile of the

terrain and further the sag of the chosen cable due to its weight, elasticity and tension a

second algorithm looks for further necessary support points choosing the position with the

most critical distance first putting there the next support.

A third algorithm simulates the movement of the cable car at full weight along the support

cable considering a maximum of support height and cable tension in the valley station to

look for further necessary supports. Afterwards the optimization process starts using the

chosen support positions, the maximum of height for each support.

Global optimization strategies usually does not require initial guesses but a closed region,

which contains probably the optimal solution [17].
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A. Cost functional

First we define the mountain profile as a real function p(x), where x ∈ I, and I = [0, Xmax]

is some interval [18]. We use the cost functional

J =
N

∑

j=1

hj , (11)

where hj ≡ Yj − p(Xj) is the height of the j-th support. The coordinates Xj, Yj are

variational parameters, N is the number of supports. As first numerical studies have shown,

this approach reflects an important part of what in reality is useful. In fact increase the

critical crippling force with the height of the support, so it is advantageous to use supports

so low as possible.

B. Constraints

The optimal solution must fulfill several constraints. We denote these by C0, C1.... Con-

straints can be defined trough equalities or inequalities. Here the introduced constraints are

written either as equalities Cj = 0 or inequalities Cj ≤ 0 respectively.

The most important constraint is the distance ”car–ground” δymin, which must be greater

than a certain value (e.g. δymin = 5 m) to avoid car–ground collisions. The first constraint

C0 consequently reads

C0 = δymin − min
xpl∈I

[f(xpl) − p(xpl)] , (12)

where xpl is the point load position. The second constraint ensures that the support cable

during the raid of the car does not leave the support [for a discussion of this point see [8, 9]].

The cable–support force at the support no. j is denoted as [19]

Fj(xpl) = F j
x(xpl)ex + F j

y (xpl)ey . (13)

The components F j
x(xpl), F j

y (xpl) obviously depend on the position of the point load. We

are interested for the vertical component F j
y (xpl), which must be at least negative for all

supports and all positions xpl. Let us define the boundary value for F j
y (xpl) with F j

y,min. So

we have

F j
y (xpl) ≤ F j

y,min ∀j , xpl. (14)
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In realistic situations the values F j
y,min are not constant but depend on the positions of the

supports. This is due to the wind–induced vertical forces, which must be taken into account

when computing F j
y,min [15]. At the moment we neglect this fact and use a constant value

for all supports. The constraints, corresponding to Eq. (14), are

Cj = max
xpl∈I

[

F j
y (xpl) − F j

y,min

]

, j = 1, 2, ...N (15)

For a support cable fixed at the ends of the line, the cable tension depends on the position

of the point load and in particular the determination of the maximal cable tension Tmax

requires some computational effort. On the other hand, the situation is quite simple when

one end of the cable is movable. If one neglects friction resistances on the support, the

maximal cable tension is constant i.e. does not depend on the position of the point load.

In any case the maximal cable tension must be in the safe range regarding the minimal

breaking tension Tbr. This yields the constraint

CN+1 = νTmax − Tbr . (16)

Usually one sets for the security factor ν = 3.5 for person transport ropeways.

IV. NUMERICAL EXAMPLES

In this section we present two numerical examples to demonstrate the theory given in the

previous sections.

A. Case study: linear profile

A linear mountain profile, (horizontal 1000 m, vertical 500 m, Fig. 3), is the simplest

possible case to check the optimization strategy and the numerical results. We use the

”Differential Evolution” Algorithm to minimize Eq. (11) with constraint C0 = 0. As Fig. 3

shows, the position of the support takes place in the first half of the profile (X < 500 m).

This is reasonable, because the cable tension grows with increasing height. So the first span

has a greater mid–span catenary sag than the second one. The end–points of the line are

held fixed at a height of 5 m. Fig. 4 shows a similar result for a support cable fixed at

both ends of the line. A global minimum for the support height exists, which can be found
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bound. cond. T0 [kN] 100 150 200

end fix Xmin [m] 475 482.2 484.7

end fix hmin [m] 63.3 49.1 40.3

sp. weight Xmin [m] 419.7 446.9 460.2

sp. weight hmin [m] 105.5 72.2 55.6

TABLE I: Optimal support positions and heights for a cable fixed at the end points and spanned

with a counterweight T0. Parameters as in Fig. 3.

T0 = 100 kN

T0 = 200 kN

X = 419.7 m

X = 460.2 m

0 200 400 600 800 1000
0

100

200

300

400

500

X @mD

Y
@m
D

FIG. 3: Results for a linear profile (slope 1/2) with 1 support. Two cases with different spanning

weight T0 are shown: For T0 = 100 kN one obtains J ≡ h1 = 105.5 m and for T0 = 200 kN

J = h1 = 55.6 m (δymin = 5 m). Dashed lines indicate the empty cables. Cable parameters here

and in all other figures: a locked coil rope with diameter 21 mm and a metallic cross section of 301

mm2 was used. The linear mass density is ρL = 2.53 kg/m, the breaking tension Tbr = 530 kN,

the mass of the point load is m = 1000 kg respectively.

using standard local optimization techniques such as ”Line search” methods. Tab. I shows a

summary of results for both types of boundary conditions: cable fixed at the end points and

spanned with a counterweight. As expected, for a cable fixed at the endpoints, the supports

are quite lower.
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FIG. 4: Plot of the minimal support height versus the support position for the linear profile and

support cable fixed at the end points. The only constraint considered in this example is C0 = 0, with

δymin = 5 m. The red, dashed line corresponds to T0 = 80 kN, the solid, blue line to T0 = 100 kN

respectively. The global minimum of J in the latter case is hmin ≈ 68 m at X ≈ 480 m. As

expectable the position of the minimum goes versus the middle of the span for increasing tension

T0.

B. Realistic situation

The mountain profile is shown in the upper part of Fig. 5 (a plant in South tyrol). For

the optimization procedure we have choosen the mass of the point load as m = 580 kg,

the cable type is as described in Fig. 3. The cable is held fixed at both ends of the line

and the positions of three supports are determined by minimization of Eq. (11) subjected

to constraints. The cable tension in the valley station is T0 = 173 kN. The maximal cable

tension during the ride is Tmax = 192.6 kN, occurring for xpl ≈ 700 m. The constraint C4 is

fulfilled for ν = 3.1.

V. SUMMARY AND OUTLOOK

In this work we have presented first results of our research on optimization of cable rail-

ways. We have defined a cost functional and constraints to find out optimal support positions

by an optimization procedure, where we have analyzed local and global optimization strate-

gies. To check the validity of our approach we have tested a simple linear mountain profile.
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FIG. 5: The upper panel shows the mountain profile and the optimal solution found by local

optimization. The lower figure shows the normal forces (the magnitude of the force times the sign

of the y− component) on the supports when the point load is moving. All forces are negative for

all positions of the point load. The maximum value is about -15 kN and occurs on the support no.

1 when the point load is near the mountain station. For the constraints C1, C2, C3 we have set

F
j
y,min = −5 kN for all j.

The results are reasonable and as expected from intuition. A second example, based on a

real existing plant, shows reasonable results. The constraints regarding cable car–ground

distance, support forces and allowed support cable tension are fulfilled. Further studies

are needed to incorporate additional constraints and to ensure robustness of the solutions.

Parallelization of the computations becomes essentially to reduce cpu–times.
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FIG. 6: The upper part shows the support cable – ground distance during the ride. The minimum

is indicated by a black circle and is equal 5 m as required by the constraint C0. The lower panel

shows the distance d of the point load from the chord. The blue line corresponds to a certain

reference temperature, for which the optimization was executed. To demonstrate the (important)

effect of temperature we have also plotted the same distance for a temperature, which is 30 K

higher. The maximum increase of d is about 1.2 m and occurs in the second span.
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Figure captions

Fig. 1

Planning of a cable railway: aspects of the planning steps.

Fig. 2

Mechanical model used in our numerical simulations.

Fig. 3

Results for a linear profile (slope 1/2) with 1 support. Two cases with different spanning

weight T0 are shown: For T0 = 100 kN one obtains J ≡ h1 = 105.5 m and for T0 = 200 kN

J = h1 = 55.6 m (δymin = 5 m). Dashed lines indicate the empty cables. Cable parameters

here and in all other figures: a locked coil rope with diameter 21 mm and a metallic cross

section of 301 mm2 was used. The linear mass density is ρL = 2.53 kg/m, the breaking

tension Tbr = 530 kN, the mass of the point load is m = 1000 kg respectively.

Fig. 4

Plot of the minimal support height versus the support position for the linear profile and

support cable fixed at the end points. The only constraint considered in this example is

C0 = 0, with δymin = 5 m. The red, dashed line corresponds to T0 = 80 kN, the solid, blue

line to T0 = 100 kN respectively. The global minimum of J in the latter case is hmin ≈ 68 m

at X ≈ 480 m. As expectable the position of the minimum goes versus the middle of the

span for increasing tension T0.

Fig. 5

The upper panel shows the mountain profile and the optimal solution found by local

optimization. The lower figure shows the normal forces (the magnitude of the force times

the sign of the y− component) on the supports when the point load is moving. All forces

are negative for all positions of the point load. The maximum value is about -15 kN and

occurs on the support no. 1 when the point load is near the mountain station. For the

constraints C1, C2, C3 we have set F j
y,min = −5 kN for all j.

Fig. 6

The upper part shows the support cable – ground distance during the ride. The minimum

is indicated by a black circle and is equal 5 m as required by the constraint C0. The lower

panel shows the distance d of the point load from the chord. The blue line corresponds to a

certain reference temperature, for which the optimization was executed. To demonstrate the
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(important) effect of temperature we have also plotted the same distance for a temperature,

which is 30 K higher. The maximum increase of d is about 1.2 m and occurs in the second

span.

Table captions

Optimal support positions and heights for a cable fixed at the end points and spanned with

a counterweight T0. Parameters as in Fig. 3.



16



17



18

T0 = 100 kN

T0 = 200 kN

X = 419.7 m

X = 460.2 m

0 200 400 600 800 1000
0

100

200

300

400

500

X @mD

Y
@m
D



19

T0 = 80 kN

T0 = 100 kN

300 400 500 600 700

70

80

90

100

110

120

X @mD

h
m

in
@m
D



20

1 2 3
−100

−50

0

Position of the point load

F
n
 [

k
N

]

 

 

Supp. 1

Supp. 2

Supp. 3

X (m)

Y
 (

m
)

200 600 1000 1400

1700

1900

2100



21

0 200 400 600 800 1000 1200 1400 1600
0

50

100

Position of the point load [m]

δ
 y

 [
m

]

 

 

Distance point load − ground

Distance support cable − ground

0 200 400 600 800 1000 1200 1400 1600
0

10

20

Position of the point load [m]

d
 [

m
]



22

bound. cond. T0 [kN] 100 150 200

end fix Xmin [m] 475 482.2 484.7

end fix hmin [m] 63.3 49.1 40.3

sp. weight Xmin [m] 419.7 446.9 460.2

sp. weight hmin [m] 105.5 72.2 55.6


